# Dynamic and Flexible Airline Schedule Design



Cynthia Barnhart Hai Jiang

Global Airline Industry Program October 26, 2006 De-banked (or De-peaked) Hubs



American de-peaked ORD (2002), DFW (2002), MIA(2004)

Continental de-peaked EWR

United de-peaked ORD (2004), LAX (2005), SFO (2006)

Delta de-peaked ATL (2005)

Lufthansa de-peaked FRA (2004)

# Opportunity in a De-Peaked Schedule



Flight re-timing creates new itineraries, adjusts market supply

# Dynamic Airline Scheduling

- Dynamic scheduling idea
  - Move the capacity (supply) in various markets so as to optimize profitability in response to demand variability:
    - Retiming flights
      - Creating new itineraries and eliminating itineraries only if no bookings to date
    - "Swapping" aircraft
      - Re-assigning aircraft within the same fleet family
        - Maintaining crew feasibility
        - Maintaining conservation of flow (or balance) by fleet type
        - Maintaining satisfaction of maintenance constraints Barnhart - Global Airline Industry Program 2006

# Case Study

- Major US Airline
  - 832 flights daily
  - 7 aircraft types
  - 50,000 passengers
  - 302 inbound and 302 outbound flights at hub daily
    - Banked hub operations- must de-bank
- Re-time
  - → +/- 15 minutes
- Re-fleet
  - A320 & A319
  - CRJ & CR9
- One week in August, with daily total demand:
  - higher than average (Aug 1)
  - average (Aug 2)
  - lower than average (Aug 3)
- Protect all connecting itineraries sold in Period up to d-t
  - t = 21 or 28 days
- Two scenarios concerning forecast demand
  - Perfect information
  - Historical average demand

## Improvement In Profitability

- Consistent improvement in profitability
  - Forecast A
    - 4-8% improvement in profit
    - 60-140k daily
  - Forecast B
    - 2-4% improvement in profit
    - 30-80k daily
    - Benefits remain significant when using Forecast B- a lower bound
  - not including benefit from aircraft savings, reduced gates and personnel ...



# Comparison: Re-Time & Re-Fleet

Average daily profitability results (\$)

|                    | Forecast A | Forecast B | P <sup>B</sup> /P <sup>A</sup> |
|--------------------|------------|------------|--------------------------------|
| Dynamic Scheduling | 99,541     | 49,991     | 50.22%                         |
| Re-fleeting Only   | 28,031     | 7,542      | 26.91%                         |
| Re-timing Only     | 44,297     | 37,800     | 85.33%                         |

- The two mechanisms are synergistic
  - PA(Dynamic scheduling) > PA(re-fleeting) + PA(re-timing)
  - $P^{B}$ (Dynamic scheduling) >  $P^{B}$ (re-fleeting) +  $P^{B}$ (re-timing)
- Re-timing is less affected by deterioration of forecast quality
  - Larger P<sup>B</sup>/P<sup>A</sup> ratios
- Re-timing contributes more than flight re-fleeting
  - P<sup>A</sup>(re-fleeting) < P<sup>A</sup>(re-timing)
  - P<sup>B</sup>(re-fleeting) < P<sup>B</sup>(re-timing)

# Case Study 2: Weekly Schedules

Assess the performance of dynamic scheduling under a weekly schedule



# Weekly Schedule Results

- Schedule Generation
  - Approach A: Extend the daily schedule design model to a weekly model (computationally intractable)
  - Approach B:
    - Generate Monday schedule using average Monday forecast;
       generate Tuesday schedule using average Tuesday forecast; and so on
    - These schedules do not form a weekly schedule, but are able to take weekly demand variation into consideration
- Dynamic scheduling continues to improve profitability

| Average daily profit improvement |                |                |  |  |
|----------------------------------|----------------|----------------|--|--|
|                                  | Daily          | Weekly         |  |  |
| Forecast A                       | 99,541 (5.26%) | 92,384 (4.97%) |  |  |
| Forecast B                       | 49,991 (2.64%) | 42,463 (2.28%) |  |  |

### Other Statistics

- System load factors went up 0.5-1%
- Aircraft savings

| 136   | perfect + retime + swap | average + retime + swap |
|-------|-------------------------|-------------------------|
| 1-Aug | 1 A320                  | 1 A320                  |
| 2-Aug | 1 A320 1 CR9            | 1 A320 1 CR9            |
| 3-Aug | 1 A320 2 CR9            | 1 A320                  |

- Schedule changes
  - About 100 fleet changes
  - 85-90% flights are retimed
    - Average retiming of 8 minutes



Barnhart - Global Airline Ind Program 2006

# Flexible Planning

- Re-optimization decisions constrained by original schedule
  - Can we design our original schedule to facilitate dynamic scheduling?

#### Goal

- Maximize the number of <u>connections</u> that can be created to accommodate unexpected demands
  - Objective function value within .0% of original schedule

# Preliminary Results

- Under Forecast A, improvement is not significant
  - When forecast is perfect, don't need to create a schedule that can be altered to accommodate variations in demand
- Under Forecast B, improvements obtainable
  - When forecast is imperfect, an improved schedule can be constructed with dynamic scheduling



# De-Banking and Robust Optimization-No Dynamic Scheduling

| Schedule A          | Schedule B  | Schedule c         |
|---------------------|-------------|--------------------|
| (banked)            | (de-banked) | (robust de-banked) |
| Revenue 8,170,245   | 8,146,066   | 8,165,746          |
| -                   | -0.30%      | -0.06%             |
| Cost 6,001,400      | 5,929,789   | 5,929,789          |
| -                   | -1.19%      | -1.19%             |
| Profit 2,168,845    | 2,216,277   | 2,235,957          |
| -                   | 2.19%       | 3.09%              |
| No. of aircraft 171 | 170         | 170                |

- Summary of Findings

  Flexible planning and dynamic scheduling result in consistent improvement in
  - Profitability
    - Allows additional revenue capture without additional resources
      - Flight retiming effectively increases the number of connecting passengers served
  - Load factor
  - Number of passengers (connecting/nonstop) served
  - Savings in number of aircraft used
  - Benefit remains significant when the forecast is relatively simple
    - Re-timing decisions more robust to demand uncertainties

# Questions?



Barnhart - Global Airline Industry Program 2006